If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2=-18X+80
We move all terms to the left:
X^2-(-18X+80)=0
We get rid of parentheses
X^2+18X-80=0
a = 1; b = 18; c = -80;
Δ = b2-4ac
Δ = 182-4·1·(-80)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{161}}{2*1}=\frac{-18-2\sqrt{161}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{161}}{2*1}=\frac{-18+2\sqrt{161}}{2} $
| 15(10x+40)+3x=4x+22 | | 3/4c-4=2 | | 7x-7=12+2 | | -9-n=-74 | | 15/11=w-15/8 | | x+(x+38)=90 | | 1/2x-4=2/5x+2 | | 13t=16(t-1/3) | | 4.2g+6=1.2g+21 | | 1/x+1/5x=1/3 | | 2x+3x-14=8x+4 | | 27+a=-14 | | 8x-90=180 | | 5/6(12t+12)-1=3/5(10t-10)+11 | | .10x+15=100 | | 4x-12=-12-8x | | -3x2+17x-2=3 | | 4(x+4x)=96 | | a-14=4a-3 | | (2x−1)(x+3)=0 | | 160=4(6*5)+2(5h) | | 2x-4=3x-20 | | 4(2x+5)-8=12+8x | | 26x^2-10x+25=0 | | A(n)=5(n-1)(-3) | | 6x+1=6x-25 | | -3+5+6y=11-3y | | 3(2y+1)=13 | | 7x-11=12x-1 | | 4x/5=x/10-9/2 | | 1/9=5/6-m | | 2^2x-5×2^x+4=0. |